Abstract

Human populations tend to grow steadily, because of the ability of people to make innovations, and thus overcome and extend the limits imposed by natural resources. It is therefore questionable whether traditional concepts of population ecology, including environmental carrying capacity, can be applied to human societies. The existence of carrying capacity cannot be simply inferred from population time-series, but it can be indicated by the tendency of populations to return to a previous state after a disturbance. So far only indirect evidence at a coarse-grained scale has indicated the historical existence of human carrying capacity. We analysed unique historical population data on 88 settlements before and after the Thirty Years War (1618–1648), one the longest and most destructive conflicts in European history, which reduced the population of Central Europe by 30–50%. The recovery rate of individual settlements after the war was positively correlated with the extent of the disturbance, so that the population size of the settlements after a period of regeneration was similar to the pre-war situation, indicating an equilibrium population size (i.e. carrying capacity). The carrying capacity of individual settlements was positively determined mostly by the fertility of the soil and the area of the cadastre, and negatively by the number of other settlements in the surroundings. Pre-industrial human population sizes were thus probably controlled by negative density dependence mediated by soil fertility, which could not increase due to limited agricultural technologies.