Trains were designed to break down after third-party repairs, hackers find::The train manufacturer accused the hackers of slander.

  • gravitas_deficiency@sh.itjust.works
    link
    fedilink
    English
    arrow-up
    4
    arrow-down
    1
    ·
    edit-2
    7 months ago

    To be honest, while train safety is extremely important, aircraft safety is a whole ‘nother ballpark. Shit going very wrong on a train is bad, and may kill a lot of people. Shit going very wrong on a plane is catastrophic, and will almost certainly kill everyone on the plane.

    Source: I have worked in aerospace. The rules and laws around this stuff are very much written in blood.

    • tankplanker@lemmy.world
      link
      fedilink
      English
      arrow-up
      1
      arrow-down
      1
      ·
      7 months ago

      While parts don’t need to be made to the same standard nor do you need the same depth of safety components, I completely disagree that we should not be applying the same hygiene to part province and maintenance schedules. Obviously this should apply to track side components such as signalling, the track etc. as well, just like it should for the parts of an airport that a plane will interact with.

      Avoiding utter maintenance shit shows like the train crash in India that killed 300 people seem just as attractive to fix as they do with planes. Or the toxic spills that America has had that may not have killed as many people but are still expensive and hugely disrupting.

      Part of getting maintenance schedules followed properly and using quality parts is right to repair, part availability, and being able to prove part provenance and quality. A method to audit a part is essential for this, if we do whats needed by allowing 3rd parties to make parts to original spec for a reasonable cost, like we should to lower cost. Lower cost, more chance companies will avoid cutting corners, particularly if there is a proper audit trail for the part and you can actually prove that it is the *part *as well.

      • gravitas_deficiency@sh.itjust.works
        link
        fedilink
        English
        arrow-up
        2
        ·
        edit-2
        7 months ago

        You’re not accounting for the substantial differences between the physical contexts in which trains and aircraft operate; the physics in play are wildly different, and have substantially different risk profiles due to that.

        If an engine breaks…

        • on a train: the train stops.
        • on a plane: depending on the situation, the plane has to make an emergency landing in the next case, and everyone dies in the worst case

        If a structural issue exists and begins to spread:

        • on a train: it can be catastrophic, but the situation will likely devolve in a more segmented fashion, simply because trains move far slower than planes do.
        • on a plane: it will almost certainly be catastrophic, and the situation commonly devolves rapidly, if not nearly instantaneously, because passengers jets normally operate around .85 Mach.

        More generally: the difference is that the “catastrophic spectrum” that can affect aircraft is much broader and has far more extreme consequences - as in, passenger survivability is often all or nothing, or at least very close to it.

        Edit: not to mention: you’re talking about Indian trains, which are in notoriously poor repair, and commonly operate at passenger capacities that would give most European, American, Korean, Japanese, or Chinese civil engineers a serious case of hives. Also not to mention: if this is the accident to which you’re referring, the fatality rate was ~25% - obviously not great, but if a similarity catastrophic air incident were to have occurred (e.g. a midair collision), the fatality rate would have been 100%.

        • tankplanker@lemmy.world
          link
          fedilink
          English
          arrow-up
          1
          arrow-down
          3
          ·
          7 months ago

          I am intentionally not accounting for it, as its irrelevant to an end to end parts tracking system.

          Your difference is only really relevant to the standards that the part is made, the safety systems the vehicle needs to have including redundancy, and the frequency and depth of the maintenance schedule.

          Both need to be able to prove that shoddy third party parts haven’t been fitted, that the parts have been replaced on schedule, even if the quality of the parts and the frequency of replacement is completely different.

          • gravitas_deficiency@sh.itjust.works
            link
            fedilink
            English
            arrow-up
            3
            arrow-down
            1
            ·
            7 months ago

            They way you’re talking about this make me pretty confident you’ve never actually worked in a safety-critical environment. There are different thresholds for different things in different situations, and there are excellent reasons for that.

            And once again, you are categorically disregarding the poor maintenance and high average age of the Indian train system. I don’t care that you are “intentionally” not accounting for it - not accounting for it means the basis on which you’re evaluating the incident is fundamentally flawed. If I were to not change the oil on my car for 25k miles, I would expect to have an issue, and it would be my fault. Poor maintenance can and does lead to catastrophic outcomes, and there are countless instances throughout history where poor maintenance was the proximate cause for a loss of life.

            • tankplanker@lemmy.world
              link
              fedilink
              English
              arrow-up
              2
              arrow-down
              1
              ·
              7 months ago

              And again, I don’t see that it applies at all to what is a parts tracking system, its not a maintenance plan, a direct safety system, operational guidelines for engineers or anything else you are falsely trying to make it.

              You keep describing the maintenance schedule, which is again, irrelevant to tracking the history of parts. Age of the system is also irrelevant to the problem here, a system outside or inside its operational life span can still have shitty black market parts fitted to it making it more unsafe than using the correct part.

              The airline industry in particular has been hit with a number of planes being fitted with bogus parts, this is despite all of the things you talk about, they have not worked for tracking parts and proving their provenance. Hence, a more robust system is needed.