primarily for small scale DIY

  • Usernameblankface@lemmy.world
    link
    fedilink
    arrow-up
    9
    ·
    edit-2
    11 months ago

    I think you’ll need to be more specific.

    Batteries that are ready to wire together and integrate into a small solar system?

    A battery station with inverter and charge controller built in, designed to replace a backup generator?

    Individual 18650s that are best for building a battery bank to store up solar power?

    • laverabe@lemmy.worldOP
      link
      fedilink
      arrow-up
      7
      ·
      11 months ago

      Well whatever the most cost effective method of storing DC power from solar panels would be. I figure deep cycle lead-acid is probably still the cost per watt leader, but was just pondering the question who anyone who knows a bit about the topic.

      • Usernameblankface@lemmy.world
        link
        fedilink
        arrow-up
        7
        ·
        11 months ago

        Hmm, so it’s a question of what gets the most watt-hours stored for the least money?

        Is there a size limit to the total battery pack?

        Is the solar controller part of the budget or already paid for?

        I hope I’m not being overly pedantic, we may have already narrowed it down to where someone can jump in with a recommendation.

        From what I’ve seen, the controller is the expensive part. If you have that, then it’s a search for the cheapest battery type that is compatible with the controller. If it is made to take care of lead acid, then those are probably your best route for less expensive storage.

        Downsides are that they do need maintenance and some knowledge of how they work to keep lead acid going for the long haul with top performance, and they take up more space than lithium based batteries.

          • Usernameblankface@lemmy.world
            link
            fedilink
            arrow-up
            2
            ·
            edit-2
            11 months ago

            You’re right! A lead acid battery should not be discharged past half of its capacity, it shortened the lifespan of the battery if you do.

            So, you need at least double your regular watt-hours that you use overnight in storage plus the batteries will need ongoing maintenance for it to last as long as possible.

      • JayleneSlide@lemmy.world
        link
        fedilink
        arrow-up
        2
        ·
        11 months ago

        The acid is not the problem. It’s the sulfation of the plates (or mats) in flooded cell (and absorbent glass mat) batteries that ruins the batteries.

      • centof@lemm.ee
        link
        fedilink
        English
        arrow-up
        2
        ·
        11 months ago

        Yeah, I guess you could recondition one kinda like how this guy does it. I had never heard of doing that before. Thanks for the info.

        I would still opt for li ion even with that though. Lithium Ion has a 2x greater depth of discharge(usable stored power) and 2-3x the lifetime (not taking into account any reconditioning) when compared to lead acid. That equals 4-6x the utility theoretically at around double the cost. That would make li ion 2-3x more bang for your buck compared to lead acid.

        But there may be some case, for using a cheaper lead acid on a small scale project. Just be aware of the maintenance requirements of them and the increased cost if you do end up using it on a long term project.

  • NeoNachtwaechter@lemmy.world
    link
    fedilink
    arrow-up
    4
    ·
    11 months ago

    The most cost effective ones are not exactly on the market.

    You order the parts and the needed tools/devices from the land of the free mail order businesses, and then you follow some youtube tutorial for instructions how to build your battery. Saves you thousands.

  • Toes♀
    link
    fedilink
    arrow-up
    1
    ·
    11 months ago

    lithium ferrophosphate type battery for deep cycling