Exactly. Gasoline, for example, is remarkably non-toxic, but it will cause instant chemical burns to your throat and lungs, possibly killing you far below the (chemically) lethal dose.
Methanol will turn you blind at a quarter of the listed dose, and those two are just from the top of my head.
I wonder how they came up with the LD50 of all those materials, like THC and LSD. Is this based on theoretical calculation, in vitro tests, or on a (assumably) very small sample of known deaths?
Step 1: Feed/Inject mutliple rat populations with different concentrations
Step 2: See how many die.
Step 3: The concentration which causes 50% of the population to die is the LD50
Or aspects like arsenic staying in your body a very long time, or the fact that LSD is psychoactive in microgram doses, so you’d need thousands of tabs to die.
Let’s not forget this only refers to LD50 not permanent organ damage.
Exactly. Gasoline, for example, is remarkably non-toxic, but it will cause instant chemical burns to your throat and lungs, possibly killing you far below the (chemically) lethal dose.
Methanol will turn you blind at a quarter of the listed dose, and those two are just from the top of my head.
I wonder how they came up with the LD50 of all those materials, like THC and LSD. Is this based on theoretical calculation, in vitro tests, or on a (assumably) very small sample of known deaths?
Step 1: Feed/Inject mutliple rat populations with different concentrations
Step 2: See how many die.
Step 3: The concentration which causes 50% of the population to die is the LD50
While I was thinking you were yet another user, you were a rat the whole time! Wait, we are all rats!
Jokes aside, animal testing as a data source seems reasonable to me. Thanks
All the above, most likely
Or aspects like arsenic staying in your body a very long time, or the fact that LSD is psychoactive in microgram doses, so you’d need thousands of tabs to die.