Undeterred after three decades of looking, and with some assistance from a supercomputer, mathematicians have finally discovered a new example of a special integer called a Dedekind number.
In mathematics, the Dedekind numbers are a rapidly growing sequence of integers named after Richard Dedekind, who defined them in 1897. The Dedekind number M(n) is the number of monotone boolean functions of n variables. Equivalently, it is the number of antichains of subsets of an n-element set, the number of elements in a free distributive lattice with n generators, and one more than the number of abstract simplicial complexes on a set with n elements.
Pretty simple to understand. I mean, I understand it, for sure. Totally.
Good work everyone. I stay more with the stereo boolean variables, but the news about those lattices being free now is really great stuff. We really did something here
I looked it up on Wikipedia.
Pretty simple to understand. I mean, I understand it, for sure. Totally.
Ah, yes, those things, of course.
Ah, yes. I know
somenone of these words.I understood most of the words, just the ones that I didn’t made the rest incomprehensible garbledygoop
Glad we cleared that up. In hindsight, it was pretty obvious from the start.
Good work everyone. I stay more with the stereo boolean variables, but the news about those lattices being free now is really great stuff. We really did something here
Lol, I thought that at first, but I’m pretty sure it’s in how much larger the next number is to the last one.
Yes that’s what it means, what is rapidly growing is the value of the next number in the sequence, not the amount of numbers we discovered!
Long slaughtering necromancer math